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Abstract—The number of cryptographic ransomware attacks
is increasing on a yearly basis. Similarly, this type of ransomware
is evolving at an ever-increasing pace. By contrast, the current
detection techniques are becoming less and less effective due
to more sophisticated obfuscation techniques and are simply
unable to keep up with the constant advances of ransomware.
With more than three billion active users and an ever-increasing
presence in our daily lives, Android devices are emerging as a
new target for ransomware attacks. As such, understanding their
behavior is crucial to designing new, more effective detection
mechanisms. This paper proposes an extension to CRIBA [1] (an
open-source framework for cryptographic ransomware analysis
and comparison for the Linux operating system). This extension
aims to enable CRIBA to operate seamlessly on Android devices.
Our study provides insight into the I/0 patterns of cryptographic
ransomware in an Android environment and how its different
families compare to their Linux counterparts.

Index Terms—android ransomware, cryptographic ran-
somware, I/O tracing and analysis

I. INTRODUCTION

Ransomware attacks stand out as one of the most damaging
malware attacks, directly compromising user data by holding
it hostage and demanding a ransom. These attacks are not only
increasing in frequency but also diversifying, targeting various
operating systems, including Windows, Linux and Android
devices.

Furthermore, ransomware continually evolves, avoiding the
rules of detection tools. With this in mind, it becomes crucial
and urgent to take a step back and prioritize ransomware
behavior analysis to counteract this continuous threat. In this
work, the focus will be on the impacts of these attacks on
Android devices and the analysis of Android ransomware
samples.

There are two types of ransomware attacks: Locker and
Cryptographic ransomware. The Locker, as the name implies,
locks the user out of their system, while the Cryptographic
variant prevents users from accessing their data by encrypting
files, rendering them unusable from the user’s perspective. Our
research will specifically concentrate on the Cryptographic
variant due to its greater challenges in recovery from the
attacks and its potential for more significant damage to user
data.

Nowadays, android devices are an integral part of our
daily activities, facilitating various tasks such as shopping,
transportation, banking transactions, navigation, and sharing

important documents and personal pictures. Smartphones have
evolved into extensions of their owners, storing sensitive data
like banking information, documents, pictures and others,
making it essential to guarantee the safety of these devices
and their data.

The prevalence of Android devices, coupled with the boom-
ing mobile device industry, creates a lucrative opportunity for
cybercriminals. Since 2013, Android devices have been tar-
geted by ransomware attacks. In one instance, the ScarePack-
age ransomware attack managed to infect over nine hundred
thousand Android devices over thirty-day period [2].

With the rapid development of new ransomware fami-
lies employing innovative techniques to avoid detection, re-
searchers encounter difficulties in keeping pace with emerging
attacks. Their response time to new attacks tends to be slower
then the development speed of these new threats. Achieving
quicker response times to new ransomware attacks implies
a comprehensive understanding of how these ransomware
families operate, the type of data that needs to be collected,
and how they evolve over time.

Our primary objective, is to enhance the understanding of
ransomware I/O behavior on Android devices, streamlining the
analysis phase of ransomware to assist researchers in keeping
up pace with new ransomware trends. Subsequently, our goal
is to present a comprehensive characterization of Android
ransomware families, gaining further insights into their I/O
behavior interaction with the operating system.

Similar achievements have already been made on Linux
systems using the CRIBA framework [1], which automates the
steps involved in gathering relevant data. It correlates this data
to extract crucial information about ransomware execution,
ultimately creating visualizations that provide researchers with
easier insights on ransomware behavior without the need to
analyze large trace files.

We argue that the creation of a dedicated framework for the
Android operating system is essential, given its relevance and
recent vulnerability to ransomware attacks, which pose threats
to user data.

However, as the CRIBA framework was originally designed
for the Linux operating system, a direct application to Android
devices is not feasible. Consequently our approach involves
modifying the CRIBA framework to enable its operation on
the android operating system.



This undertaking presents a number of challenges, particu-
larly with the transition from Linux to Android. The tracing
capabilities of CRIBA are not inherently compatible with
Android, posing a significant obstacle. Moreover, as CRIBA
cannot perform the required tracing on Android, the correlation
algorithms present within CRIBA, which automate the data
analysis, must be adjusted to accommodate a new tracer.

The created tool has allowed us to observe some similar-
ities between the Linux and Android ransomware families.
Moreover, this tool automates the analysis and visualization
of Android ransomware samples behavior and, hopefully, it
will aid in the development of new techniques, that are more
accurate at detecting Android ransomware behavior.

The paper is structured as follows: Section II presents an
overview of relevant concepts to the knowledge field of this
work. Section III presents a high-level description of our
solution, describing all the steps performed to enable CRIBA
workflow for the Android system. Section IV describes the test
environment created to perform the tool evaluation. Section
V presents the results obtained by running our tool with the
samples used, highlighting the analysis carried out on each
ransomware family and the conclusions obtained regarding
their behavior. Section VI reviews related work, and Section
VII closes the paper and outlines future work.

II. BACKGROUND

Ransomware is a form of malware attack with the primary
objective of holding the user’s system hostage until a ransom
amount is paid. The primary goal of this malicious software
is to extort money from its victims.

As discussed in Section I, ransomware can be catego-
rized into two main types, Cryptographic and Locker.
This research specifically concentrates on Cryptographic
ransomware as it is the main responsible for causing significant
damages to user data.

A. Phases of a Ransomware Attack

A ransomware attack can be divided in four main phases,
them being: Infection, Communication with C&C server, De-
struction, and lastly, Extortion [19]. Initially, in the Infection
Phase, the malicious actors exploit system vulnerabilities or
rely on social engineering techniques to deploy the malicious
software on the victim’s system, which culminates with the
installation of ransomware samples in this system.

After the successful deployment of ransomware on the vic-
tim’s system, the Communication Phase follows, particularly
in more sophisticated attacks. In this phase, the ransomware
collects valuable information about the infected system and
transmits that data to a Command and Control server (C&C).
The C&C server is responsible for storing and presenting
the gathered information to the attackers. Additionally, these
servers play a crucial role in generating payment information
and storing cryptographic keys.

Following the Communication Phase is the Destruction
Phase, during which ransomware initiates malicious actions to

damage the user’s system. In the context of cryptographic ran-
somware, the Destruction Phase involves malware encrypting
files, and either deleting the original files or renaming them.

Lastly, there is the Extortion Phase where the ransomware
has finished encrypting the files, and the attacker asks the
victim for a ransom payment to release (in this case decrypt)
the victim’s data. Attackers often resort to cryptocurrencies
as a form of payment, making it even more challenging to
track these malicious actors. Typically attackers leave ransom
notes informing the victim that an attack has taken place, and
provide instructions on how the payment should be made.

B. Ransomware Analysis Research

Ransomware analysis aims to better understand the behav-
iors associated with a ransomware attack. The research in this
field can be categorized, according to the approach followed,
as Dynamic Analysis and Static Analysis [19].

1) Static Analysis: This technique of ransomware analysis
aims to understand ransomware behavior by extracting infor-
mation from a ransomware sample without actually running
it. This is achieved by disassembling ransomware binaries and
observing how the code is supposed to run, attempting to find
suspicious activities within the malicious code. Static analysis
is safer then other forms of analysis since the ransomware
is not executed. This allows the threat to be identified and
stopped even before the malware initiates its malicious behav-
iors.

However, this analysis technique can be easily evaded by
more sophisticated variants of ransomware attacks that employ
obfuscation methods to hide their malicious activity in their
binaries.

2) Dynamic Analysis: This analysis technique involves
executing the ransomware sample in a controlled and isolated
environment and observing how the malware interacts with this
environment. Unlike Static Analysis, where traditional obfus-
cation techniques can conceal malicious behavior, Dynamic
Analysis allows researchers to uncover malicious activities
more effectively. By observing ransomware’s operations in a
real execution, attackers face greater challenges hiding their
actions. However, this approach, while superior in finding ma-
licious behavior, requires substantial resources, as researchers
must establish an isolated environment and execute the ran-
somware sample to gather valuable data.

In our approach, we will perform Dynamic Analysis by
collecting ransomware samples and executing them in an
isolated Android environment. This process involves gathering
data that describes the interaction of ransomware samples with
the operating system, such as the execution of system calls,
I/O operations, file system operations, among others.

III. DESIGN

A. CRIBA and DIO

Our tool was built on top of CRIBA’s [1] architecture, shown
in Figure 1, which itself is built on top of DIO [20], a tool
for diagnosing applications I/O behavior through system call
observability, in POSIX storage systems.



Fig. 1. CRIBA’s Pipeline.

CRIBA automates the analysis of ransomware by lever-
aging the tracing capabilities of DIO to gather I/O data
from ransomware execution and providing a set of correlation
algorithms and a preset of dashboards designed for the purpose
of analyzing cryptographic ransomware samples, specifically.

With all the existing similarities between the Linux and
Android systems, mainly the eBPF technology and the same
system calls, a large percentage of CRIBA’s pipeline could
be utilized for analyzing traces from an Android system
while only needing a few adjustments to make a seamless
integration.

Despite these similarities, the tracer used in CRIBA was not
suited for tracing in an Android environment. Therefore an
alternative was warranted, leading to the adoption of BPFroid
[21].

B. BPFroid

This new tracer allows us to trace Android framework API,
native libraries, system calls and other events using the eBPF
technology.

By replacing the tracer used in CRIBA with BPFroid and
integrating it with the CRIBA analysis pipeline, CRIBA was
effectively repurposed to analyze cryptographic ransomware
samples in Android devices.

Although with a few caveats, considering that the traces
provided by BPFroid do not possess the same amount of data
as the ones provided by CRIBA. This means that a few of the
visualizations present in CRIBA’s dashboards are not available
when analyzing the I/O behavior of cryptographic ransomware
samples in an Android environment.

C. The workflow of the tool

With all the similarities with CRIBA it is no surprise that
our tool works in the same fashion as CRIBA does. That is,
the execution of the tool is divided in two distinct phases:

1) Tracing: In this phase, there is the need to have a
controlled environment, e.g., a virtual machine (VM) sim-
ulating an Android device, which executes a cryptographic
ransomware sample. All the while, BPFroid is collecting all
the system calls executed by this sample and producing a log
that can be later processed and analyzed.

2) Analysis: This next stage needs to parse the traces
obtained by BPFroid so they fit the same structure as the ones
obtained by CRIBA before being forwarded to the analysis
pipeline. This pipeline can store and index the data collected,
so that the correlation algorithms can be executed. When
executing these algorithms, the data is immediately shown in
the preset dashboards to proceed with the exploration of the
results obtained.

D. Correlation Algorithms

All of the algorithms present in CRIBA were able to be
ported, with some adjustments, in order to work with the traces
produced by BPFroid.

• UNExt Extracts the filename and extension of the files
targeted by the syscalls.

• DsetU Compares the files targeted by the syscalls with
the files contained in a given file dataset collection.

• Transversals Describes how the ransomware traverses
the file system, e.g., Breadth First Search.

• FnGram Computes the n-grams colocations for the files
that were accessed by a ransomware sample over time.

• FSysSeq Computes the sequences of consecutive unique
system calls done by the ransomware threads to all files.

• tfidFam Eases the comparison of distinct ransomware
families.

These algorithms, that are described with greater detail
in CRIBA [1], allow us to have an in-depth look at how
these cryptographic ransomware samples interact with the file
system in an Android device to establish a profile for each one
of these samples. It also makes it possible to compare these
sample behaviors to the ones targeting Linux systems.

Fig. 2. Tool Architecture.

IV. EVALUATION METHODOLOGY

A. Ransomware Families

Despite the first unsuccessfully attempts to gather Android
ransomware samples, three Android ransomware families were
chosen to carry out this analysis.

The first family, named ATANK, corresponds to a crypto-
graphic ransomware found in 2018 on the GitHub platform.
[11] It encrypts files using an AES key (composed of thirty-
two random characters) and changes the file extension, after



being encrypted, to .xdrop. Another characteristic of this
ransomware is that, it deletes all the files after twenty-four
hours or after a reboot.

The FileCoder ransomware, which corresponds to the sec-
ond family, can affect all Android devices with a version equal
to or higher than 5.1. [13] This ransomware, discovered by
the ESET Mobile Security in 2019, was distributed through
malicious website posts and attempts to spread the victim’s
contacts. Moreover, it even uses this contact list to spread
itself via SMS. [12], [14]

Finally, the SLocker family was discovered in 2016, as
were more than four hundred variants in several large-scale
attack campaigns distributed through fake applications. [17]
The following year, a new variant was detected by Trend
Micro and copied the WannaCry ransomware GUI. [15] More
recently, another variant of this crypto-ransomware was found
in an application that intended to provide users with more
information about the coronavirus. [16] Instead, after being
downloaded and executed, the users were locked out of their
devices. Furthermore, it is considered the first Android ran-
somware that uses file encryption, is distributed through fake
apps, and uses a TOR anonymity network to communicate
with its controller. [18]

B. File System Dataset

In order to correctly assess this tool and to create an
environment closest to reality for this evaluation, the team
resorted to using the framework Impressions [22] to create
an accurate file system with our operating system.

Having this in mind, the team created a file system with
1GB, that includes 3547 files with sizes between 0MB to
29MB, as it is possible to see in Figure 3.

Fig. 3. File size distribution in the created file system.

C. Setup

In order to run all ransomware samples safely, our setup
included two virtual environments, a Linux virtual machine,
and an Android operating system emulator.

The Linux virtual machine corresponds to an Ubuntu 64-bit
22.04.3 with a disk size of 48.5 GB, 8GB of memory, and
four cores from an Intel Core i9 2,3 GHz with eight cores.
This machine created with the help of VMWare Fusion also
includes the Android-SDK tools. Since this tool is based on

TABLE I
TOP 3 SYSCALL TYPES ISSUED PER RANSOMWARE FAMILY.

FamilySyscall Atank Filcoder Slocker

#1
read

(66.16%)
read

(26.79%)
read

(49.43%)

#2
write

(33.24%)
write

(18.49%)
write

(49.21%)

#3
openat
(0.14%)

openat
(16.64%)

close
(0.33%)

TABLE II
EXECUTION TIME, PROCESS CREATION, ACCESSED FILES AND ISSUED

SYSCALLS STATISTICS FOR THE RANSOMWARE FAMILIES.

Process Accesses SyscallsFamily Execution
time (min) PIDs TIDs Paths Extensions Events

Atank 14.53 2 30 418 109 4 763 662
Filecoder 2.12 1 40 2012 26 35 492
Slocker 1.13 1 27 438 121 252 153

the CRIBA pipeline it was necessary to set up our modified
version of the pipeline, ready for analysis.

Fig. 4. Android Virtual Device (AVD) specification.

Regarding the Android emulator, it was necessary to create
an Android Virtual Device (AVD). To create this AVD, we
focused on choosing an android version which allows us to
have system root permissions. The characteristics of the AVD
used are shown in Figure 4.

Once the AVD was working, a compiled version of BPFroid
was copied into it, using the Android Debug Bridge (ADB) ,
which enabled the execution of this tracer in the emulator to
capture of all events specified in a configuration file, hooks.js.
After every ransomware sample execution, this emulator is
restored to a clean state.

Therefore, the setup for the execution of our tool is com-
plete.

V. EVALUATION RESULTS

In this section, we will discuss the analysis of the three
ransomware variants ATANK, Filecoder and Slocker. We will
begin with a brief overview, presenting generic statistics for
each family. Subsequently, we are going to dive into more
detail about specific features of a ransomware attack, such as
data encryption.

Finally, we will provide conclusions on how our proposed
tool contributed to these findings and compare the different
ransomware families.



Fig. 5. Aggregated number of operations, separated by system call type, for the top five threads lauched by Slocker.

A. Overview

Given that we are employing dynamic analysis to under-
stand ransomware I/O behavior and its interactions with the
Android operating system, one of the first metrics to have in
consideration is the amount and the type of system calls issued
by the malicious software.

The tables II and I reveal some general metrics collected
with our tool.

From table II, we can notice that there is a significant
difference between the execution times of ATANK and the
other two ransomware families analyzed. ATANK execution
took ≈ 14.5 minutes while Filecoder and Slocker did in ≈
2.1 and 1.1 minutes, respectively.

Another important observation to make about the general
statistics present in table II is that across the three ransomware
families there is a similarity in the number of processes and
threads. All three ransomware families present a lot more
threads than processes, only ATANK has two processes with
the others having only one.

Table II also gives insights about the number of file paths
and file extensions accessed by each ransomware family. Here
we can see that the Filecoder accessed a large number of
files (2012 files) when compared with the other two, however
Filecoder did that while interacting with fewer extensions (26
file extensions).

Table I gives valuable information about the distribution of
the majority of system calls executed by each ransomware
family. Across all three families of ransomware the read
system call is the most executed, and the write is the second
most executed system call. The third most executed system call
varies, for ATANK and Filecoder it is the openat and for the
Slocker is the close system call. All of these system calls are
closely related to the encryption employed by these malicious
applications, since to encrypt a file one has to open it, read its
contents, write the encrypted contents and close the file.

One final consideration is the distribution of the system
calls executed through the threads of each ransomware. For
the ATANK ransomware, when comparing the top 5 main

TABLE III
TOP 2 SYSCALL SEQUENCES ISSUED PER FAMILY OVER A FILE.

Syscall sequenceFamily Main Sequence Second Sequence

ATANK OP→ST→RD→CL OP→ST→WR→CL
Filecoder OP→ST→RD→CL→OP→ST→CL OP→ST→WR→CL
Slocker OP→ST→RD→CL OP→ST→CL→OP→ST→WR→CL

threads in terms of number of system calls executed, one of
the main five threads executed ≈ 99% of the total number of
system calls distributed by these five threads. Similarly, for
the Filecoder family ≈ 60% of the system calls are executed
by one of the main five threads.

However, for the Slocker ransomware family a significant
different distribution is observed, with 10 of the available
27 threads being involved in the encryption of files. The
distribution of system calls executed among the top five threads
is between ≈ 20% and ≈ 30% of system calls being executed
by each thread. Figure 5 illustrates the similar distribution of
workload among the top five threads of Slocker, as mentioned
earlier.

In summary, these general statistics illustrate that ran-
somware families have different patterns of execution time,
create a different amount of threads and processes, and access
a different number of files.

All of these statistics were automatically generated using
the Unext script, and explored through the General Overview
and Directory Transversal dashboards.

B. Encryption of Files

Table III shows the two most frequent sequences of system
calls executed over a file by each analyzed ransomware family.
To understand these sequences of system calls it is important
to note, that if one system call is repeated consecutively it
only appears as one system call in the represented sequences.

From Table III we can extract a distinctive pattern: the
main sequence always includes a read system call (or multiple
consecutive reads), and the second sequence always includes
a write system call (or multiple consecutive writes).



TABLE IV
SYSCALL SEQUENCES ISSUED BY THE Filecoder FAMILY OVER TWO FILES.

Syscall sequenceFamily F189.cpp F189.cpp.sevem

Filecoder OP→ST→RD→CL→OP→ST→CL OP→ST→WR→CL

These sequences of system calls are linked to the encryption
of data, the main sequence is employed by each ransomware
to read the user data from a file, and the second sequence is
used to write the encrypted data.

Upon further investigation, we were able to find these
system call sequences being executed by ransomware samples
to encrypt user data, and another common pattern was found
across all three ransomware variants: to encrypt a user file, the
ransomware creates a new file with a distinctive extension, and
starts reading data from the user file and writing the encrypted
form of that data to the new file. When the encryption process
is done all three ransomware samples delete the original file
with an unlinkat system call.

Table IV shows the system call sequences present in Table
III , being used by the Filecoder ransomware family to encrypt
a file from our file dataset.

As mentioned above, all three ransomware families an-
alyzed add an extension to the encrypted file. The char-
acteristic extensions for ATANK, Filecoder and Slocker
are respectively: .xdrop, .seven and .勿卸 件解密
加QQ1951275599bahk10018998.

Apart from the general encryption behavior that is common
across all three ransomware families, some distinctive patterns
were discovered for each ransomware family in the encryption
phase.

1) Atank: After reading all the contents of the original
file and creating a new file to write the encrypted data, the
original file is deleted with the following sequence of system
calls (close→faccessat→unlinkat→openat). The
ransomware tries to open the original file after it’s been
deleted, possibly to verify that if it was deleted correctly.

With more detailed analysis of the encryption process of
ATANK a strange behavior was found, two threads were found
opening the same file, both creating two files with the .xdrop
extension, and both trying to read from the original file and
writing the encrypted data to the newly created file. After
closing the files, both threads try to remove the original user
file using the unlinkat system call. One of the threads fails
to delete the file (unlinkat returns a negative value) since
the other had already removed that file.

These two threads try to encrypt multiple files simultane-
ously, but by the time the ransomware reaches our file dataset
only one thread is encrypting files. This strange behavior on
some of the files might produce irreversible damage to the
files, since the two threads are accessing and writing to the
same file concurrently.

Another interesting finding on the encryption process of the
ATANK is that the thread encrypting a file reads 8 bytes at a

time from the original file, and writes 16 bytes at a time to
the encrypted data file.

2) Filecoder: This family follows some of the same pat-
terns found in the ATANK ransomware. It starts by reading
the contents of the original file then creates a new file with
the .seven extension where the encrypted data is written.
The difference here is found once the encryption is done, the
Filecoder variant closes the original file, and then opens it
again, issues an fstat system call and closes the file again.

Another observation of the Filecoder’s encryption process
is that, during the dataset transversal, this ransomware opens
a directory before it opens the files inside this directory. So
for a directory dir/ including two files a.txt and b.txt
we will see an open(dir) system call and only after the
open(a.txt) and open(b.txt) system calls that open
the files within the directory.

3) Slocker: This is the only family of the three analyzed,
where the encryption of files is done by multiple threads. Al-
though the encryption is done by multiple threads, contrasting
with the previous analyzed families, the encryption process is
very similar to the pattern found in ATANK and Filecoder.

However, the Slocker family deviates from the typi-
cal encryption pattern once the encryption is done, which
means the data is totally written to the file created by
the ransomware. As the other two families, Slocker cre-
ates a new file to write the encrypted content, starts read-
ing data from the original file and writes the encrypted
form of this data to the created file. The files created
by Slocker to write encrypted data have the extension
".!! 勿卸 件解密加QQ1951275599bahk10018998"
until the encryption process ends. When the encryp-
tion process ends, the file with the extension ".!! 勿
卸 件解密加QQ1951275599bahk10018998" is re-
named and the extension changes to ".勿卸 件解密
加QQ1951275599bahk10018998", possibly so the ran-
somware knows what files have been fully encrypted.

In summary, the actions applied by these ransomware
families are very similar to each other, however they have
distinctive features that distinguishes the three families. In
general the encryption process involves reading the original
user file, creating a new file with the same name but with a
different extension and writing the encrypted version of the
original data in this new file.

All of the observations discussed in this section were ob-
tained with FSysSeq, UNext algorithms and observed with the
Syscall sequences, and File Names and Extensions dashboards.

C. Dataset’s File Selection

In some cases ransomware tries to select the files it will
encrypt to accelerate the encryption process and cause the most
damage possible to the user data. With that in mind, here we
will present and discuss the observations made on the files
selected by ransomware for encryption.

Starting by the ATANK sample, one interesting pattern found
during analysis is that it never accessed any files deeper than
the first folder of the dataset directory. Despite taking the



longest time to execute, it encrypted less files than the other
two samples, accessing 181 files from our dataset.

Considering the Filecoder family, we start to observe more
interesting patterns, that demonstrate a ransomware choosing
specific files to encrypt. Upon analyzing the encrypted files
by this variant of ransomware, we noticed that from all the
extensions present in the our file dataset, this sample only ac-
cessed the following 10 extensions: .cpp, .gif, .mml,
.mp3, myd, .odb, .pdf, .pst, .txt, .wma.

These file extensions are known to be associated with
documents, images, audio and video files, Microsoft files,
MySQL database files and others. So, by targeting this specific
files on our file dataset, the ransomware is trying to provoke
the most damage possible to sensitive and important user data.

On the Slocker variant, we observed that it only encrypts
files on the dataset that are within a depth of three directories
starting from the dataset root directory.

Summarizing, we can observe different behaviors of ran-
somware when choosing files to encrypt, with Filecoder trying
to achieve more damage by targeting specific files and Slocker
and ATANK only encrypting files up to a depth of directories,
possibly to accelerate the encryption process.

D. Families Similarity

Figure 6 provides valuable information about the similar-
ity and dissimilarity across the three ransomware families.
Starting on the system calls, we can observe a significant
similarity between the ATANK and Slocker families, this can
be explained by the common system calls used by ransomware
families (openat, read, write, close, etc ) and
because, as discussed in Section V-B, these two families have
very similar patterns for reading data using the same system
call sequence to read data (illustrated on Table III). In general,
all three ransomware families share a significant amount of
system call types and sequences, explaining the similarities
above 50% across all families, with Filecoder being more
dissimilar from the other two because it executes a bigger
diversity of system calls.

The similarities between the three families when comparing
the accessed file names and extensions are less significant.
This is possibly linked to the encryption process, explained in
Section V-B, where all three families create a new file with
a new extension to write encrypted data, effectively accessing
a new file name and a new extension, and given that each
ransomware family has its unique extension that can lower
the similarities found by the tfidFam algorithm.

E. Linux and Android Families

In this section we are going to give a brief comparison
between the families analyzed with CRIBA [1] in the Linux
Operating System (OS) , and the ones analyzed with our tool
in the Android OS.

Starting with the creation of Ransom Notes which is de-
scribed in CRIBA as a way for attacker to communicate
to the victim an attack has occurred, every family analyzed
in [1] created this files throughout the file system as files

were encrypted. However, none of the ransomware families
analyzed in this research displayed this kind of behavior,
instead they would display a message on screen or change
the device’s background to inform the victim of the attack.

Moving to the encryption behavior, there’s another signif-
icant difference between the Android and the Linux families.
The Linux targeting families would read a user file and write
the encrypted data to the same file and, when the encryption
process was done, these families would change the name of
the file adding a characteristic extension with the system call
rename.

On the other hand, the Android analyzed families read the
contents of a user file and create a new file, with a specific
extension, writing the encrypted data to this new file and when
the encryption process is completed they delete the original file
with the system call unlinkat

Additionally, the Filecoder, Slocker, AVOSLOCKER, RAN-
SOMEXX, and DARKSIDE use a single process, although the
number of threads created is very distinct between Linux and
Android families (higher in the Android families), as the file
path accessed number (lower in the Android families).

VI. RELATED WORK

As shown in Table V and VI, most work related to ran-
somware in Android devices focuses on the detection of
ransomware, mostly through static and dynamic code analysis,
[3]-[5], [9], [10], although others [6]-[8] use the tracing of
system calls. These results are then used to classify a process
as harmless or as a ransomware. Since the main purpose of
these tools is the detection of ransomware not much is known
about the behavior of the ransomware itself.

The reports generated by the system call tracers while a
ransomware sample is being executed are too extensive to be
analyzed without aid. The tool presented in this paper aims to
automate the process of analyzing ransomware samples.

Besides that, it simply focuses on the tracing and visualizing
I/O patterns generated by ransomware samples along with
making the comparison of different ransomware families more
efficient through the correlation algorithms. As such, this tool
does not have the purpose of ransomware detection, it is
instead a tool for analyzing the behavior ransomware samples.
As stated many times above this tool is an extension for
Android devices of CRIBA [1], as such it follows in the same
principles.

VII. CONCLUSION

With the above research we present an extension to CRIBA
[1], allowing it to perform analysis of Android ransomware
samples, by extracting similar features as does extracted by
CRIBA on Linux ransomware samples.

Our modified version of CRIBA is capable of non-intrusive
collection of relevant I/O data from ransomware sample activ-
ity and is able to accommodate CRIBA’s correlation algorithms
for the Android operating system, expanding the capabilities
proposed by CRIBA to perform analysis on ransomware that
targets a different operating system.



Fig. 6. Heatmaps comparing the families regarding the type of issued system calls, and accessed file extension and names.

TABLE V
RELATED WORK FOCUS.

Article Tracing Detection
[1] ✓
[3] ✓
[4] ✓
[5] ✓
[6] ✓
[7] ✓
[8] ✓
[9] ✓
[10] ✓

TABLE VI
RELATED WORK TYPE OF ANALYSIS PERFORMED.

Article System Calls Static/Dynamic Code Analysis
[1] ✓
[3] ✓
[4] ✓
[5] ✓
[6] ✓
[7] ✓
[8] ✓
[9] ✓
[10] ✓

We were also able to accommodate most of CRIBA’s
visualization component to the Android ransomware samples
extracted data, excluding the Resource Usage and File Offset
dashboards

Our modified version of CRIBA to accommodate Android
targeting ransomware is publicly available at https://github.
com/dsrhaslab/criba-android.

As future work, the group considers that it would be impor-
tant and meaningful to search for and test more ransomware
samples and possibly introduce specific dashboards for the
Android operating system.
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